China Good quality Auto Parts Drive Shaft for CHINAMFG Sunny Teana Navara Pickup Car Accessories CV Axle Shaft

Product Description

As a professional manufacturer for propeller shaft, we have +800 items for all kinds of car, main suitable
for AMERICA & EUROPE market.

 

Our advantage:

 

1. Full range of products

2. MOQ qty: 5pcs/items

3. Delivery on time

4: Warranty: 1 YEAR

5. Develope new items: FREE

 

Brand Name

KOWA DRIVE SHAFT

Item name

OEM

Car maker

For all japanese/korean/european/american car

Moq

5pcs

Guarantee

12 months

sample

Available if have stock

Price

Send inquiry to get lastest price

BOX/QTY

1PCS/Bag 4PCS /CTNS

For some items, we have stock, small order (+3000USD) is welcome.

 

The following items are some of drive shafts, If you need more information, pls contact us for ASAP.
 

For Japanese Car
for TOYOTA for TOYOTA
43420-57170 43420-57180 43410-0W081 43420-0W080
43410-57120 43420-57190 43410-0W091 43420-0W090
43410-57130 43420-57120 43410-0W100 43420-0W110
43410-57150 43420-02B10 43410-0W110 43420-0W160
43410-06221 43420-02B11 43410-0W140 43420-32161
43410-06231 43420-02B60 43410-0W150 43420-33250
43410-06460 43420-02B61 43410-0W180 43420-33280
43410-06570 43420-02B62 43410-12410 43420-48090
43410-06580 43420-06221 43410-33280 43420-48091
43410-066-90 43420-06231 43410-33290 43430OK571
43410-06750 43420-06460 43410-33330 66-5245
43410-06780 43420-06490 43410-48070 66-5247
43410-06A40 43420-06500 43410-48071 43420-57150
43410-06A50 43420- 0571 0 43410-0W061 43420-0W061
43410-07070 43420-06610 43410-0W071 43420-0W071
for Acura for LEXUS
44305STKA00 66-4198 43410-06200 43410-06480
44305STKA01 66-4261 43410-06450 43410-06560
44305SZPA00 66-4262 66-5265  
44306STKA00 66-4270 for MITSUBISHI
44306STKA01 66-4271 3815A309 3815A310
44306SZPA00      
for Honda for MAZDA
44571S1571 44306S3VA61 5L8Z3A428AB GG052550XD
44011S1571 44306S3VA62 5L8Z3A428DA GG052560XE
44305S2HN50 44306S9VA51 66-2090 GG362550XA
44305SCVA50 44306S9VA71 6L8Z3A428A YL8Z3A427AA
44305SCVA51 44306SCVA50 9L8Z3A427B YL8Z3A427BA
44305SCVA90 44306SCVA51 GG032550XD YL8Z3A428AA
44305SCVA91 44306SCVA90 GG042550XD YL8Z3A428BA
44305STXA02 44306SCVA91 GG042560XG ZC32550XA
44305SZAA01 44306STXA02 for Nissan
44306S2H951 44306SZAA01 39101-1HS0A 39100-1HS0A
44306SZAA11 44306SZAA01RM 39101-1HS0B 39100-1HS0B
44306SZAA12 66-4213    
66-4214      
for Europe Car
for VOLKSWAGEN for VOLKSWAGEN
4885712AD 7B0407271B 7E0407271G 7LA407272C
4885713AF 7B0407272 7E0407271P 7LA4 0571 2CX
4881214AE 7B0407272E 7LA407271E  
7B0407271A      
for America Car
for CHRYSLER for MERCURY
4593447AA 557180AD 4F1Z3B437AA GG322560X
4641855AA 52114390AB 5L8Z3A428DB GG362560XA
4641855AC 5273546AC 66-2249 YL8Z3A427CA
4641856AA 66-3108 9L8Z3A427C YL8Z3A427DA
4641856AC 66-3109 9L8Z3A427D YL8Z3A427EA
4882517 66-3130 GG062550XD YL8Z3A427FA
4882518 66-3131 GG062560XE YL8Z3A428CA
4882519 66-3234 GG312560X ZZDA2560X
4882520 66-3518 ZZDA2560XC ZZDA2560XA
557130AB 66-3520 for RAM
66-3552 66-3522 4885713AD 55719AB
66-3553 66-3551 4881214AD 66-3404
66-3554 66-3639 55719AA 66-3740
68193908AB 66-3641 68571398AA  
for FORD for DODGE
1F0571400 E6DZ3V428AARM 4593449AA 7B0407272A
1F0571410 E8DZ3V427AARM 4641855AE 7B0407272B
1F2Z3B436AA E8DZ3V428AARM 4641855EE 7B0407272C
2F1Z3A428CA E90Y3V427AARM 4641856AD R4881214AE
2M5Z3B437CA E90Y3V428AARM 4641856AF RL189279AA
4F1Z3B437BA F0DZ3V427AARM 4885710AC 557180AG
5M6Z3A428AA F0DZ3V428AARM 4885710AE 5170822AA
5S4Z3B437AA F21Z3B437A 4885710AF 52114390AA
66-2005 F21Z3B437B 4885710AG 5273546AD
66-2008 F2DZ3B436A 4885711AC 5273546AE
66-2571 F2DZ3B436B 4885711AD 5273546AF
66-2084 F2DZ3B437A 4885712AC 5273558AB
66-2086 F2DZ3B437B 4885712AE 5273558AD
66-2095 F4DZ3B437A 4885712AG 5273558AE
66-2101 F57Z3B436BA 4885712AH 5273558AF
66-2143 F57Z3B437BA 4885713AC 4881214AC
6S4Z3B437BA F5DZ3A427BA 4885713AG 4881214AF
8S4Z3B437A F5DZ3A428AS 4885713AI 4881214AG
9L8Z3A427A F5DZ3B426D 4885713AJ 557130AA
E6DZ3V427AARM F5DZ3B436D 5273558AG 557180AE
YF1Z3A428RS F5DZ3B437B 66-3382 557180AF
YL8Z3A428DA F5TZ3B436A 66-3511 66-3514
YS4Z3B437BB GG032560XG 66-3759 66-3564
YS4Z3B437CB GG362550X    
YF1Z3A427L      
for CHEVROLET for JEEP
257191 26062613 4578885AA 5215710AA
22791460 4578885AB 5215711AB
26011961 4578885AC 5215711AB
26571730 2657189 4720380 5273438AC
2657165 66-1401 4720381 5273438AD
26058932 66-1438 5012456AB 5273438AE
26065719 88982496 5012457AB 5273438AG
for HUMMER 5066571AA 66-3220
1571204 595716 557120AB 66-3221
15886012 66-1417 557120AC 66-3298
for CADILLAC 557120AD 66-3352
88957151 66-1416 557120AE 66-3417
66-1009 66-1430 5189278AA 66-3418
66-1415 88957150 5189279AA 66-3419

 

 

 

 

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Condition: New
Color: Black
Certification: ISO
Type: Drive Shaft
Application Brand: Nissan
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

Are there any limitations or disadvantages associated with drive shafts?

While drive shafts are widely used and offer several advantages, they also have certain limitations and disadvantages that should be considered. Here’s a detailed explanation of the limitations and disadvantages associated with drive shafts:

1. Length and Misalignment Constraints:

Drive shafts have a maximum practical length due to factors such as material strength, weight considerations, and the need to maintain rigidity and minimize vibrations. Longer drive shafts can be prone to increased bending and torsional deflection, leading to reduced efficiency and potential driveline vibrations. Additionally, drive shafts require proper alignment between the driving and driven components. Misalignment can cause increased wear, vibrations, and premature failure of the drive shaft or its associated components.

2. Limited Operating Angles:

Drive shafts, especially those using U-joints, have limitations on operating angles. U-joints are typically designed to operate within specific angular ranges, and operating beyond these limits can result in reduced efficiency, increased vibrations, and accelerated wear. In applications requiring large operating angles, constant velocity (CV) joints are often used to maintain a constant speed and accommodate greater angles. However, CV joints may introduce higher complexity and cost compared to U-joints.

3. Maintenance Requirements:

Drive shafts require regular maintenance to ensure optimal performance and reliability. This includes periodic inspection, lubrication of joints, and balancing if necessary. Failure to perform routine maintenance can lead to increased wear, vibrations, and potential driveline issues. Maintenance requirements should be considered in terms of time and resources when using drive shafts in various applications.

4. Noise and Vibration:

Drive shafts can generate noise and vibrations, especially at high speeds or when operating at certain resonant frequencies. Imbalances, misalignment, worn joints, or other factors can contribute to increased noise and vibrations. These vibrations may affect the comfort of vehicle occupants, contribute to component fatigue, and require additional measures such as dampers or vibration isolation systems to mitigate their effects.

5. Weight and Space Constraints:

Drive shafts add weight to the overall system, which can be a consideration in weight-sensitive applications, such as automotive or aerospace industries. Additionally, drive shafts require physical space for installation. In compact or tightly packaged equipment or vehicles, accommodating the necessary drive shaft length and clearances can be challenging, requiring careful design and integration considerations.

6. Cost Considerations:

Drive shafts, depending on their design, materials, and manufacturing processes, can involve significant costs. Customized or specialized drive shafts tailored to specific equipment requirements may incur higher expenses. Additionally, incorporating advanced joint configurations, such as CV joints, can add complexity and cost to the drive shaft system.

7. Inherent Power Loss:

Drive shafts transmit power from the driving source to the driven components, but they also introduce some inherent power loss due to friction, bending, and other factors. This power loss can reduce overall system efficiency, particularly in long drive shafts or applications with high torque requirements. It is important to consider power loss when determining the appropriate drive shaft design and specifications.

8. Limited Torque Capacity:

While drive shafts can handle a wide range of torque loads, there are limits to their torque capacity. Exceeding the maximum torque capacity of a drive shaft can lead to premature failure, resulting in downtime and potential damage to other driveline components. It is crucial to select a drive shaft with sufficient torque capacity for the intended application.

Despite these limitations and disadvantages, drive shafts remain a widely used and effective means of power transmission in various industries. Manufacturers continuously work to address these limitations through advancements in materials, design techniques, joint configurations, and balancing processes. By carefully considering the specific application requirements and potential drawbacks, engineers and designers can mitigate the limitations and maximize the benefits of drive shafts in their respective systems.

pto shaft

How do drive shafts enhance the performance of automobiles and trucks?

Drive shafts play a significant role in enhancing the performance of automobiles and trucks. They contribute to various aspects of vehicle performance, including power delivery, traction, handling, and overall efficiency. Here’s a detailed explanation of how drive shafts enhance the performance of automobiles and trucks:

1. Power Delivery:

Drive shafts are responsible for transferring power from the engine to the wheels, enabling the vehicle to move forward. By efficiently transmitting power without significant losses, drive shafts ensure that the engine’s power is effectively utilized, resulting in improved acceleration and overall performance. Well-designed drive shafts with minimal power loss contribute to the vehicle’s ability to deliver power to the wheels efficiently.

2. Torque Transfer:

Drive shafts facilitate the transfer of torque from the engine to the wheels. Torque is the rotational force that drives the vehicle forward. High-quality drive shafts with proper torque conversion capabilities ensure that the torque generated by the engine is effectively transmitted to the wheels. This enhances the vehicle’s ability to accelerate quickly, tow heavy loads, and climb steep gradients, thereby improving overall performance.

3. Traction and Stability:

Drive shafts contribute to the traction and stability of automobiles and trucks. They transmit power to the wheels, allowing them to exert force on the road surface. This enables the vehicle to maintain traction, especially during acceleration or when driving on slippery or uneven terrain. The efficient power delivery through the drive shafts enhances the vehicle’s stability by ensuring balanced power distribution to all wheels, improving control and handling.

4. Handling and Maneuverability:

Drive shafts have an impact on the handling and maneuverability of vehicles. They help establish a direct connection between the engine and the wheels, allowing for precise control and responsive handling. Well-designed drive shafts with minimal play or backlash contribute to a more direct and immediate response to driver inputs, enhancing the vehicle’s agility and maneuverability.

5. Weight Reduction:

Drive shafts can contribute to weight reduction in automobiles and trucks. Lightweight drive shafts made from materials such as aluminum or carbon fiber-reinforced composites reduce the overall weight of the vehicle. The reduced weight improves the power-to-weight ratio, resulting in better acceleration, handling, and fuel efficiency. Additionally, lightweight drive shafts reduce the rotational mass, allowing the engine to rev up more quickly, further enhancing performance.

6. Mechanical Efficiency:

Efficient drive shafts minimize energy losses during power transmission. By incorporating features such as high-quality bearings, low-friction seals, and optimized lubrication, drive shafts reduce friction and minimize power losses due to internal resistance. This enhances the mechanical efficiency of the drivetrain system, allowing more power to reach the wheels and improving overall vehicle performance.

7. Performance Upgrades:

Drive shaft upgrades can be a popular performance enhancement for enthusiasts. Upgraded drive shafts, such as those made from stronger materials or with enhanced torque capacity, can handle higher power outputs from modified engines. These upgrades allow for increased performance, such as improved acceleration, higher top speeds, and better overall driving dynamics.

8. Compatibility with Performance Modifications:

Performance modifications, such as engine upgrades, increased power output, or changes to the drivetrain system, often require compatible drive shafts. Drive shafts designed to handle higher torque loads or adapt to modified drivetrain configurations ensure optimal performance and reliability. They enable the vehicle to effectively harness the increased power and torque, resulting in improved performance and responsiveness.

9. Durability and Reliability:

Robust and well-maintained drive shafts contribute to the durability and reliability of automobiles and trucks. They are designed to withstand the stresses and loads associated with power transmission. High-quality materials, appropriate balancing, and regular maintenance help ensure that drive shafts operate smoothly, minimizing the risk of failures or performance issues. Reliable drive shafts enhance the overall performance by providing consistent power delivery and minimizing downtime.

10. Compatibility with Advanced Technologies:

Drive shafts are evolving in tandem with advancements in vehicle technologies. They are increasingly being integrated with advanced systems such as hybrid powertrains, electric motors, and regenerative braking. Drive shafts designed to work seamlessly with these technologies maximize their efficiency and performance benefits, contributing to improved overall vehicle performance.

In summary, drive shafts enhance the performance of automobiles and trucks by optimizing power delivery, facilitating torque transfer, improving traction and stability, enhancing handling and maneuverability, reducing weight, increasing mechanical efficiency,and enabling compatibility with performance upgrades and advanced technologies. They play a crucial role in ensuring efficient power transmission, responsive acceleration, precise handling, and overall improved performance of vehicles.pto shaft

Are there variations in drive shaft designs for different types of machinery?

Yes, there are variations in drive shaft designs to cater to the specific requirements of different types of machinery. The design of a drive shaft is influenced by factors such as the application, power transmission needs, space limitations, operating conditions, and the type of driven components. Here’s an explanation of how drive shaft designs can vary for different types of machinery:

1. Automotive Applications:

In the automotive industry, drive shaft designs can vary depending on the vehicle’s configuration. Rear-wheel-drive vehicles typically use a single-piece or two-piece drive shaft, which connects the transmission or transfer case to the rear differential. Front-wheel-drive vehicles often use a different design, employing a drive shaft that combines with the constant velocity (CV) joints to transmit power to the front wheels. All-wheel-drive vehicles may have multiple drive shafts to distribute power to all wheels. The length, diameter, material, and joint types can differ based on the vehicle’s layout and torque requirements.

2. Industrial Machinery:

Drive shaft designs for industrial machinery depend on the specific application and power transmission requirements. In manufacturing machinery, such as conveyors, presses, and rotating equipment, drive shafts are designed to transfer power efficiently within the machine. They may incorporate flexible joints or use a splined or keyed connection to accommodate misalignment or allow for easy disassembly. The dimensions, materials, and reinforcement of the drive shaft are selected based on the torque, speed, and operating conditions of the machinery.

3. Agriculture and Farming:

Agricultural machinery, such as tractors, combines, and harvesters, often requires drive shafts that can handle high torque loads and varying operating angles. These drive shafts are designed to transmit power from the engine to attachments and implements, such as mowers, balers, tillers, and harvesters. They may incorporate telescopic sections to accommodate adjustable lengths, flexible joints to compensate for misalignment during operation, and protective shielding to prevent entanglement with crops or debris.

4. Construction and Heavy Equipment:

Construction and heavy equipment, including excavators, loaders, bulldozers, and cranes, require robust drive shaft designs capable of transmitting power in demanding conditions. These drive shafts often have larger diameters and thicker walls to handle high torque loads. They may incorporate universal joints or CV joints to accommodate operating angles and absorb shocks and vibrations. Drive shafts in this category may also have additional reinforcements to withstand the harsh environments and heavy-duty applications associated with construction and excavation.

5. Marine and Maritime Applications:

Drive shaft designs for marine applications are specifically engineered to withstand the corrosive effects of seawater and the high torque loads encountered in marine propulsion systems. Marine drive shafts are typically made from stainless steel or other corrosion-resistant materials. They may incorporate flexible couplings or dampening devices to reduce vibration and mitigate the effects of misalignment. The design of marine drive shafts also considers factors such as shaft length, diameter, and support bearings to ensure reliable power transmission in marine vessels.

6. Mining and Extraction Equipment:

In the mining industry, drive shafts are used in heavy machinery and equipment such as mining trucks, excavators, and drilling rigs. These drive shafts need to withstand extremely high torque loads and harsh operating conditions. Drive shaft designs for mining applications often feature larger diameters, thicker walls, and specialized materials such as alloy steel or composite materials. They may incorporate universal joints or CV joints to handle operating angles, and they are designed to be resistant to abrasion and wear.

These examples highlight the variations in drive shaft designs for different types of machinery. The design considerations take into account factors such as power requirements, operating conditions, space constraints, alignment needs, and the specific demands of the machinery or industry. By tailoring the drive shaft design to the unique requirements of each application, optimal power transmission efficiency and reliability can be achieved.

China Good quality Auto Parts Drive Shaft for CHINAMFG Sunny Teana Navara Pickup Car Accessories CV Axle Shaft  China Good quality Auto Parts Drive Shaft for CHINAMFG Sunny Teana Navara Pickup Car Accessories CV Axle Shaft
editor by CX 2024-01-29

truck drive shaft

As one of leading truck drive shaft manufacturers, suppliers and exporters of mechanical products, We offer truck drive shaft and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of truck drive shaft

Recent Posts